

CS103
FALL 2025

Lecture 03: **Propositional Logic**

Logistics: Lecture Participation

Lecture Participation

- Starting Wednesday, we will be using the website PollEV to ask questions in lecture for attendance credit.
- If you answer these questions in lecture, you'll get attendance credit for the day.
 - You don't need to have the right answers - you just need to respond to the questions.
- CGOE students: We automatically opt you out of participation, since we assume you aren't physically here.
- If you'd prefer not to attend lectures, that's okay! You can opt to count your final exam in place of participation.
 - We'll send out a form where you can opt-out of participation in Week 4.

Do not miss this deadline!

Lecture Participation

- We'll dry-run PollEV questions today.
- Let's start with the following warm-up:

Make a music recommendation!

Answer at

<https://cs103.stanford.edu/pollev>

Click “**Register**”
and enter your
Stanford e-mail to
get to the SUNet
login page.

- Here are a few music recs of our own:
 - Jami Sieber - *Timeless*.
 - Aaron Parks - *Little Big* and *Little Big II*.
 - Arthur Moon - NPR Music Tiny Desk Concert.
 - Shakey Graves - *Roll the Bones* (check out *Audiotree Live* version).

Also:

pollev.com/cs103aut25

Propositional Logic

Question: How do we formalize the definitions and reasoning we use in our proofs?

Where We're Going

- ***Propositional Logic*** (Today)
 - Reasoning about Boolean values.
- ***First-Order Logic*** (Wednesday/Friday)
 - Reasoning about properties of multiple objects.

Outline for Today

- ***Propositional Variables***
 - Booleans, math edition!
- ***Propositional Connectives***
 - Linking things together.
- ***Truth Tables***
 - Rigorously defining connectives.
- ***Simplifying Negations***
 - Mechanically computing negations.

Propositional Logic

TakeMath51 \vee *TakeCME100*

\neg *FirstSucceed* \rightarrow *TryAgain*

IsCardinal \wedge *IsWhite*

TakeMath51 \vee *TakeCME100*

\neg *FirstSucceed* \rightarrow *TryAgain*

IsCardinal \wedge *IsWhite*

These are ***propositional variables***. Each propositional variable stands for a ***proposition***, something that is either true or false.

TakeMath51 \vee TakeCME100

\neg *FirstSucceed \rightarrow TryAgain*

IsCardinal \wedge IsWhite

These are ***propositional connectives***, which link propositions into larger propositions

Propositional Variables

- In propositional logic, individual propositions are represented by ***propositional variables***.
- Each variable can take one of two values: true or false. You can think of them as **bool** values.

Propositional Connectives

- There are seven propositional connectives, five of which will be familiar from programming.
- First, there's the logical “NOT” operation:

$\neg p$

- You'd read this out loud as “not p .”
- The fancy name for this operation is ***logical negation***.

Truth Tables

- A ***truth table*** is a table showing the truth value of a propositional logic formula as a function of its inputs.
- Let's examine the truth tables for the connectives we're exploring today!

“I don’t love cupcakes.”

LoveCupcakes : I love cupcakes.

\neg ***LoveCupcakes***

Propositional Variables

- In propositional logic, individual propositions are represented by ***propositional variables***.
- Each variable can take one of two values: true or false. You can think of them as **bool** values.
- In a move that contravenes programming style conventions, propositional variables are usually represented as lower-case letters, such as p , q , r , s , etc.
 - That said, there's nothing stopping you from using multiletter names!

“I don’t love cupcakes.”

LoveCupcakes : I love cupcakes.

\neg ***LoveCupcakes***

Propositional Connectives

- There are seven propositional connectives, five of which will be familiar from programming.
- Next, there's the logical “AND” operation:

$p \wedge q$

- You'd read this out loud as “ p and q .”
- The fancy name for this operation is ***logical conjunction***.

“It’s cardinal and white.”

IsCardinal : It’s cardinal.

IsWhite : It’s white.

IsCardinal \wedge *IsWhite*

Propositional Connectives

- There are seven propositional connectives, five of which will be familiar from programming.
- Then, there's the logical “OR” operation:

$p \vee q$

- You'd read this out loud as “ p or q .”
- The fancy name for this operation is ***logical disjunction***. This is an *inclusive* or.

“You must take Math 51 or CME 100.”

TakeMath51 : You must take Math 51.

TakeCME100 : You must take CME 100.

TakeMath51 \vee ***TakeCME100***

Propositional Connectives

- There are seven propositional connectives, five of which will be familiar from programming.
- There's also the “truth” connective:

T

- You'd read this out loud as “true.”
- Although this is technically considered a connective, it “connects” zero things and behaves like a variable that's always true.

Propositional Connectives

- There are seven propositional connectives, five of which will be familiar from programming.
- Finally, there's the “false” connective.

⊥

- You'd read this out loud as “false.”
- Like T , this is technically a connective, but acts like a variable that's always false.

Inclusive and Exclusive OR

- The \vee connective is an *inclusive* “or.” It's true if at least one of the operands is true.
 - It's similar to the `||` operator in C, C++, Java, etc. and the `or` operator in Python.
- Sometimes we need an *exclusive* “or,” which isn't true if both inputs are true.
- We can build this out of what we already have.

Write a propositional logic formula for the exclusive OR of p and q .

Answer at

<https://cs103.stanford.edu/pollev>

Quick Question:

What would I have to show you to convince you that the statement $p \wedge q$ is false?

Quick Question:

What would I have to show you to convince you that the statement $p \vee q$ is false?

de Morgan's Laws

$\neg(p \wedge q)$ *is equivalent to* ??

$\neg(p \vee q)$ *is equivalent to* ??

de Morgan's Laws in Code

- **Pro tip:** Don't write this:

```
if (!(p() && q())) {  
    /* ... */  
}
```

- Write this instead:

```
if (!p() || !q()) {  
    /* ... */  
}
```

- (This even short-circuits correctly: if p() returns false, q() is never evaluated.)

Mathematical Implication

Implication

- We can represent implications using this connective:

$$p \rightarrow q$$

- You'd read this out loud as “ p implies q .”
 - The fancy name for this is the ***material conditional***.
- ***Question:*** What should the truth table for $p \rightarrow q$ look like?

p	q	$p \rightarrow q$
F	F	T
F	T	T
T	F	F
T	T	T

p	q	$p \rightarrow q$
F	F	T
F	T	T
T	F	F
T	T	T

An implication is false only when the antecedent is true and the consequent is false.

Every formula is either true or false, so these other entries have to be true.

p	q	$p \rightarrow q$
F	F	T
F	T	T
T	F	F
T	T	T

Important observation:

The statement $p \rightarrow q$ is true whenever $p \wedge \neg q$ is false.

p	q	$p \rightarrow q$
F	F	T
F	T	T
T	F	F
T	T	T

An implication with a false antecedent is called ***vacuously true***.

An implication with a true consequent is called ***trivially true***.

p	q	$p \rightarrow q$
F	F	T
F	T	T
T	F	F
T	T	T

Please commit this table to memory. We're going to need it, extensively, over the next couple of weeks.

“If at first you don’t succeed, try again.”

FirstSucceed : You succeed at first.

TryAgain : You ought to try again.

$\neg \text{FirstSucceed} \rightarrow \text{TryAgain}$

IF IT AIN'T FRESHLY SLICED,
IT AIN'T

OUTFRONT

2036

JerseyMikes : It's Jersey Mike's.

FreshlySliced : It's freshly sliced.

$\neg \text{FreshlySliced} \rightarrow \neg \text{JerseyMikes}$

Contrapositive?

JerseyMikes : It's Jersey Mike's.

FreshlySliced : It's freshly sliced.

$\neg \text{FreshlySliced} \rightarrow \neg \text{JerseyMikes}$

$\text{JerseyMikes} \rightarrow \text{FreshlySliced}$

An Important Equivalence

- The truth table for $p \rightarrow q$ is chosen so that the following is true:

$$p \rightarrow q \quad \text{is equivalent to} \quad \neg(p \wedge \neg q)$$

- Later on, this equivalence will be incredibly useful:

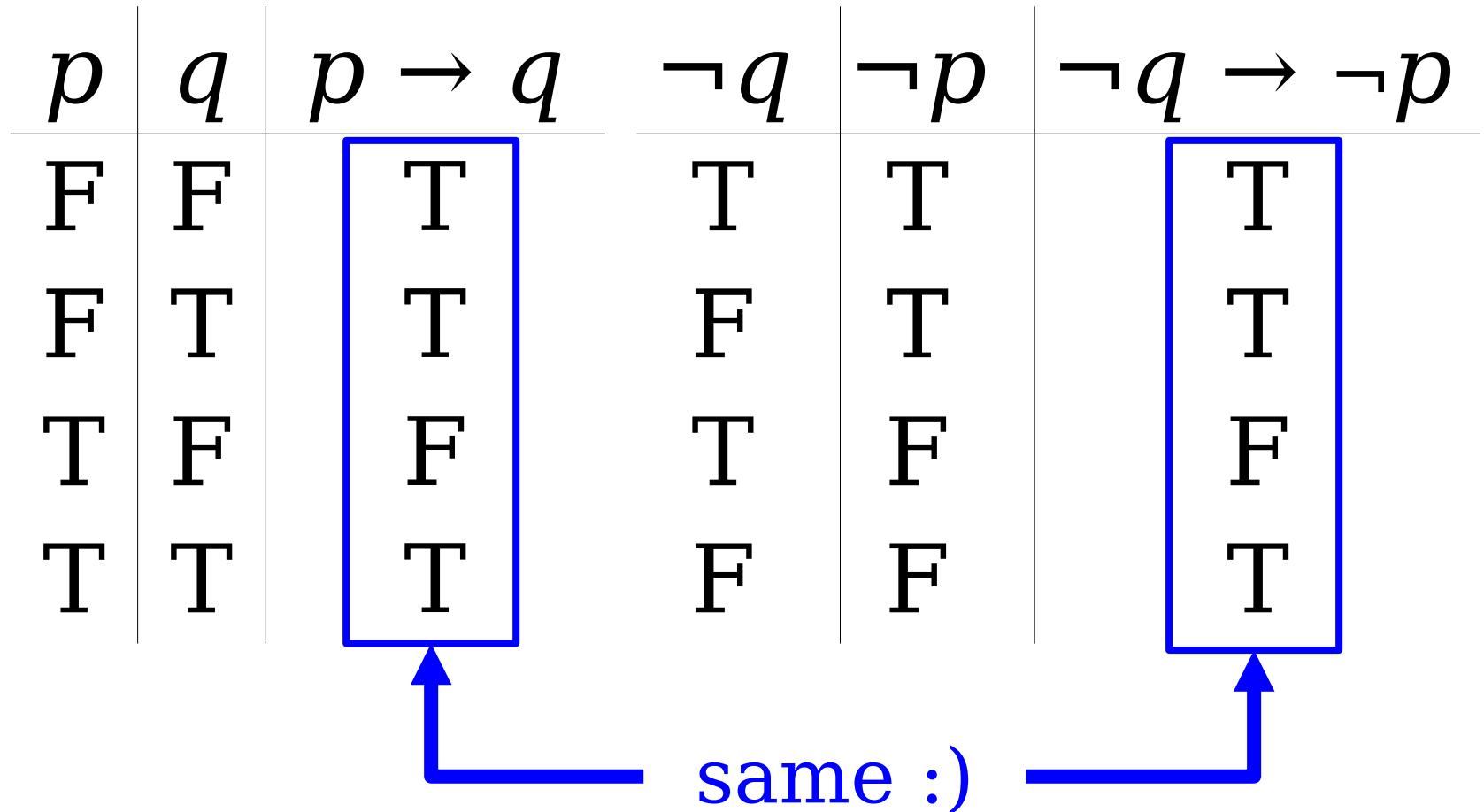
$$\neg(p \rightarrow q) \quad \text{is equivalent to} \quad p \wedge \neg q$$

Side Note: Contrapositive

We can use truth tables to demonstrate the equivalence of $p \rightarrow q$ and $\neg q \rightarrow \neg p$.

p	q	$p \rightarrow q$	$\neg q$	$\neg p$	$\neg q \rightarrow \neg p$
F	F	T	T	T	T
F	T	T	F	T	T
T	F	F	T	F	F
T	T	T	F	F	T

same :)



The Biconditional Connective

The Biconditional Connective

- In our previous lecture, we saw that the statement “ p if and only if q ” means both that $p \rightarrow q$ and $q \rightarrow p$.
- We can write this in propositional logic using the **biconditional** connective:

$p \leftrightarrow q$

- This connective’s truth table has the same meaning as “ p implies q and q implies p .”
- Based on that, what should its truth table look like?

Biconditionals

- The biconditional connective $p \leftrightarrow q$ has the same truth table as $(p \rightarrow q) \wedge (q \rightarrow p)$.
- Here's what that looks like:

p	q	$p \leftrightarrow q$
F	F	T
F	T	F
T	F	F
T	T	T

One interpretation of \leftrightarrow is to think of it as equality: the two propositions must have equal truth values.

Negating a Biconditional

- How do we simplify

$$\neg(p \leftrightarrow q)$$

using the tools we've seen so far?

- There are many options, but here are our two favorites:

$$p \leftrightarrow \neg q$$

$$\neg p \leftrightarrow q$$

Question to ponder: what is the truth table for these statements, and where have you seen it before?

Operator Precedence

- How do we parse this statement?

$$\neg x \rightarrow y \vee z \rightarrow x \vee y \wedge z$$

- Operator precedence for propositional logic:

\neg

\wedge

\vee

\rightarrow

\leftrightarrow

- All operators are right-associative.
- We can use parentheses to disambiguate.

Operator Precedence

- The main points to remember:
 - \neg binds to whatever immediately follows it.
 - \wedge and \vee bind more tightly than \rightarrow .
- We will commonly write expressions like $p \wedge q \rightarrow r$ without adding parentheses.
- For more complex expressions, we'll try to add parentheses.
- Confused? ***Please ask!***

The Big Table

Connective	Read Aloud As	C++ Version	Fancy Name	Negation
$\neg p$	“not”	!	Negation	p
$p \wedge q$	“and”	<code>&&</code>	Conjunction	$\neg p \vee \neg q$ $p \rightarrow \neg q$
$p \vee q$	“or”	<code> </code>	Disjunction	$\neg p \wedge \neg q$
\top	“true”	<code>true</code>	Truth	\perp
\perp	“false”	<code>false</code>	Falsity	\top
$p \rightarrow q$	“implies”	<i>see PS2!</i>	Implication	$p \wedge \neg q$
$p \leftrightarrow q$	“if and only if”	<i>see PS2!</i>	Biconditional	$p \leftrightarrow \neg q$ $\neg p \leftrightarrow q$

Time-Out for Announcements!

Submitting Work

- All assignments should be submitted through GradeScope.
 - The programming portion of the assignment is submitted separately from the written component.
 - The written component **must** be typed; handwritten solutions don't scan well and get mangled in GradeScope.
- All assignments are due at 1:00PM. You have three "late days" you can use throughout the quarter. Each automagically extends assignment deadlines from Friday at 1:00PM to Saturday at 1:00PM; at most one late day can be used per assignment.
 - **Very good idea:** Leave at least two hours buffer time for your first assignment submission, just in case something goes wrong.
 - **Very bad idea:** Wait until the last minute to submit.
- Your score on the problem sets is the square root of your raw score. So an 81% maps to a 90%, a 50% maps to a 71%, etc. This gives a huge boost even if you need to turn something in that isn't done.

Office Hours

- Office hours have started (as of today)! Think of them as “drop-in help hours” where you can ask questions on problem sets, lecture topics, etc.
 - Check the Guide to Office Hours on the course website for the schedule.
- TA office hours are held in person in the CoDa basement (“garden level”). Keith’s are in CoDa E114. Sean’s are in CoDa E112 (or possibly outside and upstairs from Bishop Auditorium).
- Once you arrive, sign up through the CS Office Hours Queue so that we can help people in the order they arrived:
<https://queue.cs.stanford.edu/>
- Office hours are *much* less crowded earlier in the week than later. Stop by on Monday and Tuesday!

Back to CS103!

Recap So Far

- A ***propositional variable*** is a variable that is either true or false.
- The ***propositional connectives*** are
 - Negation: $\neg p$
 - Conjunction: $p \wedge q$
 - Disjunction: $p \vee q$
 - Truth: \top
 - Falsity: \perp
 - Implication: $p \rightarrow q$
 - Biconditional: $p \leftrightarrow q$

Why All This Matters

Why All This Matters

- Suppose we want to prove the following statement:
“If $x + y = 16$, then $x \geq 8$ or $y \geq 8$ ”

Why All This Matters

- Suppose we want to prove the following statement:

“If $x + y = 16$, then $x \geq 8$ or $y \geq 8$ ”

$$x < 8 \wedge y < 8 \rightarrow x + y \neq 16$$

“If $x < 8$ and $y < 8$, then $x + y \neq 16$ ”

Theorem: If $x + y = 16$, then $x \geq 8$ or $y \geq 8$.

Proof: We will prove the contrapositive, namely, that if $x < 8$ and $y < 8$, then $x + y \neq 16$.

Pick x and y where $x < 8$ and $y < 8$. We want to show that $x + y \neq 16$. To see this, note that

$$\begin{aligned}x + y &< 8 + y \\&< 8 + 8 \\&= 16.\end{aligned}$$

This means that $x + y < 16$, so $x + y \neq 16$, which is what we needed to show. ■

Why This Matters

- Propositional logic lets us symbolically manipulate statements and theorems.
 - This can help us better understand what a theorem says or what a definition means.
- It's also very useful for proofs by contradiction and contrapositive.
- Being able to negate statements mechanically can reduce the likelihood of taking an negation of contrapositive wrong.

Negation Practice

- Here's a propositional formula that contains some negations. Simplify it as much as possible:

$$\neg(p \wedge q \rightarrow r \vee s)$$

Negation Practice

- Here's a propositional formula that contains some negations. Simplify it as much as possible:

$$p \wedge q \wedge \neg r \wedge \neg s$$

Negation Practice

- Here's a propositional formula that contains some negations. Simplify it as much as possible:

$$\neg((p \vee (q \wedge r)) \leftrightarrow (a \wedge b \wedge c \rightarrow d))$$

Negation Practice

- Here's a propositional formula that contains some negations. Simplify it as much as possible:

$$(p \vee (q \wedge r)) \leftrightarrow (a \wedge b \wedge c \wedge \neg d)$$

Next Time

- ***First-Order Logic***
 - Reasoning about groups of objects.
- ***First-Order Translations***
 - Expressing yourself in symbolic math!