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Logistics: Lecture Participation



  

Lecture Participation
● Starting Wednesday, we will be using the website PollEV 

to ask questions in lecture for attendance credit.
● If you answer these questions in lecture, you’ll get 

attendance credit for the day.
● You don’t need to have the right answers – you just need to 

respond to the questions.
● CGOE students: We automatically opt you out of 

participation, since we assume you aren’t physically here.
● If you’d prefer not to attend lectures, that’s okay! You can 

opt to count your final exam in place of participation.
● We’ll send out a form where you can opt-out of participation in 

Week 4.
Do not miss this deadline!



  

Lecture Participation
● We’ll dry-run PollEV questions today.
● Let’s start with the following warm-up:

●

● Here are a few music recs of our own:
● Jami Sieber - Timeless.
● Aaron Parks - Little Big and Little Big II.
● Arthur Moon - NPR Music Tiny Desk Concert.
● Shakey Graves – Roll the Bones (check out Audiotree Live version).

Make a music recommendation!
Answer at

https://cs103.stanford.edu/pollev

Click “Register”
and enter your

Stanford e-mail to
get to the SUNet

login page.

Also:

pollev.com/cs103aut25

https://cs103.stanford.edu/pollev


  

Propositional Logic



  

Question: How do we formalize the 
definitions and reasoning we use in our 

proofs?



  

Where We're Going
● Propositional Logic (Today)

● Reasoning about Boolean values.
● First-Order Logic (Wednesday/Friday)

● Reasoning about properties of multiple 
objects.



  

Outline for Today
● Propositional Variables

● Booleans, math edition!
● Propositional Connectives

● Linking things together.
● Truth Tables

● Rigorously defining connectives.
● Simplifying Negations

● Mechanically computing negations.



  

Propositional Logic



  

TakeMath51 ∨ TakeCME100

¬FirstSucceed → TryAgain

IsCardinal ∧ IsWhite



  

TakeMath51 ∨ TakeCME100

¬FirstSucceed → TryAgain

IsCardinal ∧ IsWhite

These are propositional 
variables. Each propositional 

variable stands for a 
proposition, something that is 

either true or false.



  

TakeMath51 ∨ TakeCME100

¬FirstSucceed → TryAgain

IsCardinal ∧ IsWhite

These are propositional 
connectives, which link 
propositions into larger 

propositions



  

Propositional Variables
● In propositional logic, individual 

propositions are represented by 
propositional variables.

● Each variable can take one one of two 
values: true or false. You can think of 
them as bool values.



  

Propositional Connectives
● There are seven propositional connectives, five 

of which will be familiar from programming.
● First, there’s the logical “NOT” operation:

¬p
● You’d read this out loud as “not p.”
● The fancy name for this operation is logical 

negation.



  

Truth Tables
● A truth table is a table showing the 

truth value of a propositional logic 
formula as a function of its inputs.

● Let’s examine the truth tables for the 
connectives we’re exploring today!



  

¬LoveCupcakes

“I don’t love cupcakes.”

LoveCupcakes : I love cupcakes.



  

Propositional Variables
● In propositional logic, individual propositions 

are represented by propositional variables.
● Each variable can take one one of two values: 

true or false. You can think of them as bool 
values.

● In a move that contravenes programming style 
conventions, propositional variables are usually 
represented as lower-case letters, such as p, q, 
r, s, etc.
● That said, there’s nothing stopping you from using 

multiletter names!



  

¬LoveCupcakes

“I don’t love cupcakes.”

LoveCupcakes : I love cupcakes.



  

Propositional Connectives
● There are seven propositional connectives, five 

of which will be familiar from programming.
● Next, there’s the logical “AND” operation:

p ∧ q
● You’d read this out loud as “p and q.”
● The fancy name for this operation is logical 

conjunction.



  

IsCardinal ∧ IsWhite

“It’s cardinal and white.”

IsCardinal : It’s cardinal.
IsWhite : It’s white.



  

Propositional Connectives
● There are seven propositional connectives, five 

of which will be familiar from programming.
● Then, there’s the logical “OR” operation:

p ∨ q
● You’d read this out loud as “p or q.”
● The fancy name for this operation is logical 

disjunction. This is an inclusive or.



  

TakeMath51 ∨ TakeCME100

“You must take Math 51 or CME 100.”

TakeMath51 : You must take Math 51.
TakeCME100 : You must take CME 100.



  

Propositional Connectives
● There are seven propositional connectives, five 

of which will be familiar from programming.
● There’s also the “truth” connective:

⊤
● You’d read this out loud as “true.”
● Although this is technically considered a  a 

connective, it “connects” zero things and 
behaves like a variable that’s always true.



  

Propositional Connectives
● There are seven propositional connectives, five 

of which will be familiar from programming.
● Finally, there’s the “false” connective.

⊥
● You’d read this out loud as “false.”
● Like ⊤, this is technically a connective, but 

acts like a variable that’s always false.



  

Inclusive and Exclusive OR
● The ∨ connective is an inclusive “or.” It's true if at 

least one of the operands is true.
● It’s similar to the || operator in C, C++, Java, etc. and 

the or operator in Python.
● Sometimes we need an exclusive “or,” which isn’t 

true if both inputs are true.
● We can build this out of what we already have.

Write a propositional logic
formula for the exclusive OR

of p and q.

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev


  

Quick Question:

What would I have to show you to convince 
you that the statement p ∧ q is false?



  

Quick Question:

What would I have to show you to convince 
you that the statement p ∨ q is false?



  

de Morgan’s Laws

¬(p ∧ q) ??

¬(p ∨ q) ??

is equivalent to

is equivalent to



  

de Morgan’s Laws in Code
● Pro tip: Don't write this:
            if (!(p() && q())) {

                /* … */

            }

● Write this instead:
            if (!p() || !q()) {

                /* … */

            }

● (This even short-circuits correctly: if p() 
returns false, q() is never evaluated.)



  

Mathematical Implication



  

Implication
● We can represent implications using this 

connective:

p → q
● You’d read this out loud as “p implies q.”

● The fancy name for this is the material 
conditional.

● Question: What should the truth table for 
p → q look like?



  

p q p → q

T T T

TF F
TF T
FT F



  

p q p → q

T T T

TF F
TF T
FT F

An implication is false only 
when the antecedent is true 
and the consequent is false.

Every formula is either true 
or false, so these other 
entries have to be true.



  

p q p → q

T T T

TF F
TF T
FT F

Important observation: 
The statement p → q is true 
whenever p ∧ ¬q is false.



  

p q p → q

T T T

TF F
TF T
FT F

An implication with a 
true consequent is called 

trivially true.

An implication with a 
false antecedent is 

called vacuously true.



  

p q p → q

T T T

TF F
TF T
FT F

Please commit this table 
to memory. We’re going to 

need it, extensively, over 
the next couple of weeks.



  

¬FirstSucceed → TryAgain

“If at first you don’t succeed, try again.”

FirstSucceed : You succeed at first.
TryAgain : You ought to try again.



  



  

¬FreshlySliced → ¬JerseyMikes

JerseyMikes : It’s Jersey Mike’s.
FreshlySliced : It’s freshly sliced.

Contrapositive?



  

¬FreshlySliced → ¬JerseyMikes

JerseyMikes : It’s Jersey Mike’s.
FreshlySliced : It’s freshly sliced.

JerseyMikes → FreshlySliced



  

An Important Equivalence
● The truth table for for p → q is chosen so 

that the following is true:
    p → q    is equivalent to    ¬(p ∧ ¬q)

● Later on, this equivalence will be 
incredibly useful:
¬(p → q)    is equivalent to    p ∧ ¬q      



  

Side Note: Contrapositive

T
F
T
T

p q p → q
F
F
T
T

F

F
T

T T
F
T
T

¬q → ¬p¬q ¬p
T
F
T
F

T

F
T

F

We can use truth tables to demonstrate the 
equivalence of p → q and ¬q → ¬p.

same :)



  

The Biconditional Connective



  

The Biconditional Connective
● In our previous lecture, we saw that the 

statement “p if and only if q” means both that 
p → q and q → p.

● We can write this in propositional logic using 
the biconditional connective:

p ↔ q
● This connective’s truth table has the same 

meaning as “p implies q and q implies p.”
● Based on that, what should its truth table look 

like?



  

Biconditionals
● The biconditional connective p ↔ q has 

the same truth table as (p → q) ∧ (q → p).
● Here’s what that looks like:

T
F
F
T

p q p ↔ q
F
F
T
T

F

F
T

T

One interpretation of ↔ 
is to think of it as 
equality: the two 

propositions must have 
equal truth values.



  

Negating a Biconditional
● How do we simplify

¬(p ↔ q)
using the tools we’ve seen so far?

● There are many options, but here are our 
two favorites:

p ↔ ¬q                ¬p ↔ q

Question to ponder: what is 
the truth table for these 
statements, and where have 

you seen it before?



  

Operator Precedence
● How do we parse this statement?

¬x → y ∨ z → x ∨ y ∧ z
● Operator precedence for propositional logic:

¬   
∧   
∨   
→   
↔   

● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Operator Precedence
● The main points to remember:

● ¬ binds to whatever immediately follows it.
● ∧ and ∨ bind more tightly than →.

● We will commonly write expressions like 
p ∧ q → r without adding parentheses.

● For more complex expressions, we'll try to 
add parentheses.

● Confused? Please ask!



  

The Big Table
Connective Read Aloud As C++ Version Fancy Name

¬p

p ∧ q

p ∨ q

p → q

p ↔ q

“not”

“and”

“or”

“implies”

“if and only if”

!

&&

||

see PS2!

see PS2!

Negation

Conjunction

Disjunction

Implication

Biconditional

⊤

⊥

“true”

“false”

true

false

Truth

Falsity

Negation

p

¬p ∨ ¬q
p → ¬q

¬p ∧ ¬q

p ∧ ¬q

p ↔ ¬q
¬p ↔ q

⊥

⊤



  

Time-Out for Announcements!



  

     ✉️ Submitting Work     ✉️
● All assignments should be submitted through GradeScope.

● The programming portion of the assignment is submitted separately 
from the written component.

● The written component must be typed; handwritten solutions don’t 
scan well and get mangled in GradeScope.

● All assignments are due at 1:00PM. You have three “late days” 
you can use throughout the quarter. Each automagically extends 
assignment deadlines from Friday at 1:00PM to Saturday at 
1:00PM; at most one late day can be used per assignment.
● Very good idea: Leave at least two hours buffer time for your first 

assignment submission, just in case something goes wrong.
● Very bad idea: Wait until the last minute to submit.

● Your score on the problem sets is the square root of your raw 
score. So an 81% maps to a 90%, a 50% maps to a 71%, etc. This 
gives a huge boost even if you need to turn something in that 
isn’t done.



  

Office Hours
● Office hours have started (as of today)! Think of them as 

“drop-in help hours” where you can ask questions on 
problem sets, lecture topics, etc.
● Check the Guide to Office Hours on the course website for the 

schedule.
● TA office hours are held in person in the CoDa basement 

(“garden level”). Keith’s are in CoDa E114. Sean’s are in 
CoDa E112 (or possibly outside and upstairs from Bishop 
Auditorium).

● Once you arrive, sign up through the CS Office Hours Queue 
so that we can help people in the order they arrived:

https://queue.cs.stanford.edu/
● Office hours are much less crowded earlier in the week than 

later. Stop by on Monday and Tuesday!

https://queue.cs.stanford.edu/


  

Back to CS103!



  

Recap So Far
● A propositional variable is a variable that is 

either true or false.
● The propositional connectives are

● Negation: ¬p
● Conjunction: p ∧ q
● Disjunction: p ∨ q
● Truth: ⊤
● Falsity: ⊥
● Implication: p → q
● Biconditional: p ↔ q



  

Why All This Matters



  

Why All This Matters
● Suppose we want to prove the following 

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”   



  

Why All This Matters
● Suppose we want to prove the following 

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”   

x < 8 ∧ y < 8 → x + y ≠ 16

“If x < 8 and y < 8, then x + y ≠ 16”



  

Theorem: If x + y = 16, then x ≥ 8 or y ≥ 8.

Proof: We will prove the contrapositive, namely, that
if x < 8 and y < 8, then x + y ≠ 16.

 

Pick x and y where x < 8 and y < 8. We want to show
that x + y ≠ 16. To see this, note that

 

x + y < 8 + y
         < 8 + 8

= 16.
 

This means that x + y < 16, so x + y ≠ 16, which is
what we needed to show. ■



  

Why This Matters
● Propositional logic lets us symbolically 

manipulate statements and theorems.
● This can help us better understand what a 

theorem says or what a definition means.
● It’s also very useful for proofs by 

contradiction and contrapositive.
● Being able to negate statements 

mechanically can reduce the likelihood of 
taking an negation of contrapositive 
wrong.



  

Negation Practice
● Here’s a propositional formula that 

contains some negations. Simplify it as 
much as possible:

¬(p ∧ q → r ∨ s)



  

Negation Practice
● Here’s a propositional formula that 

contains some negations. Simplify it as 
much as possible:

p ∧ q ∧ ¬r ∧ ¬s



  

Negation Practice
● Here’s a propositional formula that 

contains some negations. Simplify it as 
much as possible:

¬((p ∨ (q ∧ r)) ↔ (a ∧ b ∧ c → d))



  

Negation Practice
● Here’s a propositional formula that 

contains some negations. Simplify it as 
much as possible:

((p ∨ (q ∧ r)) ↔ (a ∧ b ∧ c ∧ ¬d))



  

Next Time
● First-Order Logic

● Reasoning about groups of objects.
● First-Order Translations

● Expressing yourself in symbolic math!


